Can AI change Healthcare?

Health data are exploding, expected to grow by 48 percent annually coming to 153 Exabyte in 2013, according to the report from EMC and the IDC research firm. If the trend continues (and there is no evidence that it will stop), this figure will swell to 2,314 Exabyte by 2020.

Imagine: “should all patient data be stored on stack of tablet computers, by the 2013 it will be 5,500 miles high. Seven years later, that tower would grow to more than 82,000 miles high, bringing you more than a third of the way to the moon!
No human brain is able to cope with such an avalanche. There are about 10,000 known human diseases, yet doctors, squeezed between 10 minutes allocated per patient visit, are only able to recall a fraction of them at any given moment. To help providers to navigate and not to drown in the oceans of data Artificial Intelligence (AI) technology comes into the picture.

By analysing enormous amount of data (patient’s records, X-ray and images, endoscopies, even social networks, etc. within seconds, identifying repeatable patterns and learning from mistakes, this technology promises to extend (or in certain cases) surpass human intellectual capacities. Stanford researchers, e.g., were able to create an algorithm that is flagging abnormal readings from a standard ECG identifying heart conditions such as atrial fibrillation or complete heart blockage with greater sensitivity and precision than certified physicians. Researchers from Showa University  in Japan can recognise bowel cancer in less than a second with 94 percent accuracy. More convincing evidences of AI advances are coming.

Healthcare system have to adjust to innovations. What fundamental changes can be expected?
Farewell medicine.

Medicine Doctor Hand Working With Modern Computer InterfaceOne of the fundamental changes AI can bring to healthcare systems is the obliteration of the traditional European medicine. Medicine as the discipline focused on curing diseases primarily with the help of medication and interventive surgeries will dissolve in healthcare interpreted as an attempt to support healthy condition of each individual as long as possible. Technology can help physicians to proactively address human organism not as a sum of separate parts, but as an integrated system.
According to Epic Systems founder and CEO Judy Faulkner:” Artificial intelligence, machine learning, and big data analytics should help providers make sense of how different aspects of a patient connect to one another.”

Physicians who are treating patients suffering from complex diseases with multiple disorders know very well: curing each symptom does not always make a patient healthier. For instance, one can confine the cholesterol from rising above a certain level with statins, maintaining the systolic blood pressure under 130 mm Hg, restrict the glucose levels from rising beyond a prescribed level, but still more disturbing signs may appear. As if our body resisted to controlling various symptoms in order to signal systematic problems underlying clinical manifestation of the disease.

Cancer is one of the vivid examples of a systematic disease. One has to consider enormous amount of external and internal risk factors such as age, family history, radiation or pollution, bacteria or viruses, etc. to understand the origin of cells mutation.

The UK’s National Health Service (NHS) and Intel are working together to make cancer detection more efficient through AI. Initially focusing on the lung cancer, a team of scientists, hosted by the University of Warwick’s Tissue Image Analytics laboratory, have been creating a digital repository of known tumour and immune cells based on thousands of human tissue cells. The database of cancer information will then be used by algorithms to recognize these cells automatically.

Unlike traditional contemporary healthcare that are focused on sequential treatment of explicit clinical presentations of the disease, the future synthetic care might be able to look at the patient through holistic lenses analysing biological complexities of the whole organism, taking into account interaction of its subsystems and genetic patterns.

Smart patients.

Better-health-appNew generation of “smart patients” will appear. No more those “patient” patients submissively swallowing everything that doctor is prescribing them. Artificial intelligence might enable people not just to see their health data, but to understand them.
One can imagine in the future personal intelligent advisor, sort of “mini-Watson” on any kind of smart devices.

Applications teaching people to understand the complexity of health information are coming out.
The British subscription, online medical consultation and health service, Babylon launched an application which offers consumers medical consultation based on their personal medical history and professional medical expertise. Users report symptoms of their illness to the app, which checks them against a database of diseases using speech recognition. After taking into consideration the patient’s history and circumstances, Babylon offers an appropriate course of action.

Ada is another example of a personal health advisor developed by the Berlin and London based start up. Via a conversational interface it helps to specify symptoms suggesting information on what might be the cause of the disease. If needed, the application can recommend a remote consultation with a real doctor over text.
Upcoming sophisticated and more accurate sensor enabled devices supported by intelligent applications will gradually make patients into active and knowledgeable participants of care processes.

Smarter physicians.

SmartDoctorsRobots will hardly wipe away physicians. So far, they are not possessing human qualities such as imagination, curiosity or empathy necessary to do a good job in healthcare.
According to Gartner’s research director, Manjunath Bhat “Robots are not here to take away our jobs, they’re here to give us a promotion. By 2020, artificial intelligence will generate 2.3 million jobs, exceeding the 1.8 million that it will wipe out. The public sector, healthcare and education are expected to benefit the most.”

Promotion means new responsibilities and higher demands. Being freed from routine operations, necessity to memorize a lot of details that machines can do better and faster, our doctors will have to augment their knowledge and skills to the new level. They have to be smarter to meet expectations of smarter patients. Those patients will require Value, and not just Services, meaning they want to feel themselves better after treatments, not just receiving it.

Think about diagnostics. World Health Organization (WHO) recently prioritized diagnostic errors in primary care as a high-priority.
”A study conducted in a high-income country found that approximately 5% of adults experienced diagnostic errors in outpatient settings each year. Over half of these errors had the potential for severe harm. Delays in diagnosing cancer are common. About 7% of abnormal test results are not communicated to patients, which can lead to a delay in diagnosis.”

AI technology can help physician to perform a pervasive diagnostic of individual’s health status. For example, by using immune system, our personal hundred-eyed Argus body guard. T-cells and B-cells are constantly scanning our entire organism encoding information about any damaging changes. Microsoft and Adaptive Biotechnologies, another US company, have recently partnered “to build a universal blood test that can screen for dozens or even hundreds of diseases at a time, all by decoding the information in your immune system.” If the project is a success, scientists and physicians will be able to detect almost any disease even before it reveals itself.

Our doctors will have to be able to navigate in multiple interdisciplinary areas. Imagine that a gastroenterologist is looking at the CT scan to check on the appendix, but the computer system has identified the nodule in the lung as well? Nobody can achieve a universal competence in any brunch of science, but one can learn fundamental principles. Hence the new medical education built on natural sciences will be required. After all, are humans not part of the Mother Nature and thus subjects of the same laws of physics, chemistry, biology as animated objects?

All living organisms obey the laws of thermodynamics. Principles of computational fluid dynamics (CFD), a mechanical engineering field for analysing fluid flow, heat transfer in fluids, and associated phenomena with the use of computer-based simulation, are already applied to diagnose cardio-vascular diseases. Moreover, many types of ventilators used in modern medical technologies wouldn’t be possible without an understanding of fluid pressure and pulse frequency.

Association of American Medical Colleges has stated in its Scientific Foundations of Future Physicians report: “modern medicine requires the ability to synthesize information and collaborate across disciplines”. The committee also recognises “the value of improving integration in the teaching of the basic physical, chemical, mathematical, and biological sciences in medical education”.

Artificial Intelligence can provide physicians with deeper insights into patient’s conditions based on great variety of clinical, social and environmental data and achieve better diagnostics and more personalized care. But it will also demand ability to constantly operate in new fields of knowledge, challenging themselves rather than relying on habitual practices, experience and standard medical protocols.
“Curiosity, scepticism, objectivity, and the use of scientific reasoning” (Association of American Medical Colleges) should be the vision of the future healthcare which technology will hopefully stimulate.

 

 

Leave a comment