When I asked this question via social network, I have received the avalanche of fuming responses from medical professionals. The majority found the question ridiculous. Of course, patients have an influence. It is their symptoms that are studied, their blood that is examined, their vital signs that are measured to ultimately pronounce the diagnostic verdict. But should patient have an opinion in this process?
One of the straightforward responses runs as follows: Patients lacks objectivity and/or rational understanding. Their feelings and emotions are too subjective.
It isn’t the responsibility of a doctor to teach a patient WHODAS 2.0, tests and measurements or Diagnostic criteria contained in the DSM V.
It follows from the statement that a patient should continuously remain the passive object of medical examinations.

But what if a patient is confident that the verdict is wrong? Not only misdiagnosis can stigmatise an individual by ascribing anomalies she/he never possesses, but also provoke consequential medical mistakes based on initially wrong assumptions.  Diagnostic errors   are one of the major life-threatening diseases causing the death of seventy-one thousand and four hundred Americans annually. According to the Society to Improve Medical Diagnosis 2017 Annual Report every one in 10 medical diagnosis are incorrect (ten per cent).
To set up a correct diagnosis is unquestionably difficult. After all, with 10.000 known diseases any one symptom can have hundreds of possible explanations.  The problem of diagnostics is mathematically related to a class of inverse problems which are the most intricate in science. But the worst scenarios are when misdiagnoses are determined not by the complexities of the subject, but by calculative, administrative, financial or logistic priorities.

Here are some stories told by the „emotional„ patients “with the lack of understanding”. For the privacy reasons let us call them Jack and John.

PatientsDiagnosis
Jack, who had a long history of neurological and cardio disorders was delivered to the hospital with a strong vertigo, vomit and minor speech disorders. Unfortunately, this episode overlapped with the flue epidemy in Europe, so most of the hospitals were “fully booked”. One had to have a really good reason to occupy a bed for a few nights. The CT showed signs of the “old stroke” that took place a few weeks ago. From a medical perspective, nothing more to do. But the symptoms stubbornly continued and required an explanation. Jack was sent to an otolaryngologist. The solution was immediately found. In 10 minutes Jack was diagnosed  with “Neuritis Vestibularis” also known as Labyrinthitis or inner ear inflammation. Inner ear is an important part of the vestibular system which sends signals to the brain about body location in space. Its inflammation may result in a sensation of the world spinning. In two days Jack was discharged from the hospital with the prescribed dosage of cortisone. The hospital bed was free to accept another misfortunate.
They family asked for  the second opinion. None of the otolaryngologists they talked to  confirmed the diagnosis. Occasional slow of speech clearly indicated that vertigo had a more serious neurological background. Three weeks later Jack was brought back to the same hospital with a missed stroke. Physicians who examined him at the Emergency Ward and saw the previous diagnosis pronounced only one word: Rubbish!
Nevertheless, Neuritis Vestibularis is still migrating from one medical record to another whatever medical institution Jack is visiting. Moreover, since Jack was a diabetic the huge dosage of cortisone provoked the dramatic increase of his sugar level.

Another story could have had even more dramatic consequences. After heart OP (two bypasses) John was transferred to Intensive Care Unit (ICU). His conditions at that time were considered stable. He was communicative, welcomed visitors.

02990ad4d640412ba0e9be344ad4d717--ron-clipart

On the second night after the OP he was left in ISU with two nursing apprentices on duty. According to their story told later the patient attempted to take off the oxygen mask and “could have damaged himself”. Apparently, they were not listening to what John was trying to tell them: there was no oxygen in the mask and he was simply suffocating. The two strong young ladies, assisted by a belligerent staff nurse who obviously knew nothing of the case but was a priori hostile to the patient, jumped on the half-paralyzed man knotting him to the bedside to reliably interrupt his protests preventing him from pressing the emergency button. The subdermal injuries caused by fastening John were so hard and the tissue damages and bruises so deep that one of his hands was damaged forever.

Attracted by the midnight noise another patient jumped out of his bed attempting to help his roommate by calling the police. He was running along the corridor with a rubber tube hanging from his side until he was caught be the alarmed nurses who were chasing him with wild cries.

One could imagine such scenes in the Woody Allen movies, should it not actually have happened in one of the most prominent hospitals in Germany. The family expected at least an apology. Instead , John received a note in his records that he was mentally and emotionally unstable. This phrase could have followed him throughout his life, although he knew nothing of the vicious record. There was no mechanism for relatives to dispute the verdict that simply disguised hospital’s self-protective lies. Thanks God, a doctor from Rehabilitation Centre who treated John later simply erased the stigma from his records.

A friend of mine, a cardiologist from one of the reginal clinics in Germany, too young to be interested in hospitals’ „hidden agendas” and other corporate priorities alien to patients’ well-being, once complained to me that he actually was given only two or three minutes to examine a patient. He had to perform multiple tests for several people literally running from one examination room to another: ultrasound, ECG, ECG, CT, sonography, etc.

Once he was examining a patient who, from his perspective, had clear clinical indications for thrombosis. However,  the CT scan  showed no thrombus. My friend had requested his supervisor to give him more time to complete the examination. The response was: “Do your job immediately. Time is money. There is nothing on the screen, so we are clean. Move on.” Apparently the focus in the hospital was more on profit based on “volume” rather than on the optimal patient care.
Thanks God my friend ignored the instructions and continued the examination. He finally found the thrombus. Should the patient be dismissed from the hospital, he would have been dead in a few days.

The law-enforcing agencies, the police included, are generally reluctant to get involved in the cases with medical staff, no matter how grave the damage presumably were.
“There is no way patients can protest – the young cardiologist added bitterly. – You can even call the police, but they will listen not to patients, but to physicians.”

As patients and citizens, we do understand that misdiagnoses can happen. After all, we are all humans. Doctors can be tired, stressed, exhausted. But the society should not tolerate wrong diagnostics, lies and negligence intended to cover hospitals’ administrative or financial needs.

Patients are the only ones who have uncompromised and unbiased interest in correct diagnostic. Unfortunately, today they have very limited control over negligent behaviour, misdiagnosis and their devastating consequences. Can this be changed?

 

 

 

Patients engagement is almost a buzzword. But the meaning varies depending on which side of healthcare system you belong to. The fundamental reason is that patients and physicians have similar but not identical goals.

DoctorIImage
The task of the physician is to dismiss a patient in a stable condition in compliance with clinical norms and compensation plans. For example, if one’s haemoglobin is low, it should be treated with ferrous sulfate or other iron containing medications. Similarly, if the glucose concentration in the patient ‘s blood is above the norm, a patient will receive the increased dosage of insulin. This does not necessarily mean the person should be healthy, but the results of corporal examination are meeting the approved norms. So, home you go!

Patients have only one goal, and this is to get rid of the illness, whatever it takes. Hence, they are immediately stepping into the care process after getting a preliminary diagnosis.

Patient

Normally they start with surfing social networks and online sites to verify diagnosis. Such efforts are not without reason.  Diagnostic errors or a failure to provide an accurate and timely explanation of the patient’s health problems or communicate this explanation to the patient affect approximately 5% of adults in outpatient settings each year in high-income countries. Over half of these errors had a potential for severe harm. Therefore, six out of ten Europeans go online when looking for health information. 90% of the survey Europeans said that the Internet helped them to improve their knowledge about health-related topics.

Medical establishment, however, is much more sceptical about patients going online. While “84 percent of patients (according to the Medscape survey) think that technology should be used by patients to assist in the diagnostic process, only 69 percent of doctors thought it was a good idea.”

DoctorIImageIn reality, medical professionals are not as much against patients going online, e.g., populating data into EHR, but against going online independently without the senior guidance.
Thus, in 2012 Sweden launched an eHealth patient portal, which allows patients to access their medical records over the Internet. However, medical community was strongly opposing the initiative. The conclusion runs that negative attitude of physicians towards PHR (patient’s health record) was mostly explained by the changing positions between the physicians and the patient: the latter can drive the process, which reduces the physician´s ability to guide the patient.

Patients are keen to discover innovative methods of therapy. They naively presume that their life and health are worth the benefits of modern science and technology, thus ready to promote their advancements.

PatientA survey of 2,125 PatientsLikeMe members showed that 94% would be willing to share their data to help doctors improve care and 92% would be willing to share to help researchers learn more about their disease.

Healthcare innovations are also promoted through consumer technology. Think about a portable mobile ECG from AliveCor that can measure one´s ECG 24 hours under the normal conditions, Sonde Health smart phones with biomarkers that analyse voice pitch and harmonics to identify ranges of disease including cardio failure, depression, cognitive impairment or Parkinson’s disease. Avalanche of smart garments, jewelry, watches are waiting to be used to assist ubiquitous diagnostics.

DoctorIImageDoctors, on the contrary, tend to stick to conservative methods out of pragmatic reasons.
Thus, according to  Pew Internet & American Life Project study “nearly one in three doctors said they withheld medical treatment from patients if the services weren’t covered by health insurance”.
No surprise that noncompliance is growing. Patients simply do not believe that they are getting the best medication treatment. Thus, according to Medscape surveys, 50% of patients fail to take their medications as their doctors direct.

PatientPatients attempt to discuss with the physician their health issues sharing skepticism and concerns. But instead of an indifferent professional, they prefer a friendly interlocutor. Chances, however, are slim.

A study in the Annals of Internal Medicine found that patients were allowed to finish their “opening statement of concerns” in only 23 percent of doctors’ visits. A more recent analysis found patients speak for an average of only 12 seconds before being interrupted by resident physicians.

Doctors are usually reluctant to be engaged in informal conversations with patients, especially when the case is complex, under the pretext that others are urgently waiting for their assistance.

DoctorIImageOne of the honest statements: “When it comes to rare conditions, most doctors don’t have a clue as to what they are dealing with because they have never encountered or studied this particular case”. So why to give patients information that can provoke more questions to which there is no answers?

 

If patients are not getting enough response from their physicians they turn to the second opinion.

PatientA study discovers that “nearly 9 in 10 people who go for a second opinion after seeing a doctor are likely to leave with a refined or new diagnosis from what they were first told”.

Another survey conducted using records of patients referred to the Mayo Clinic’s General Internal Medicine Division over a two-year period, “ultimately found that when consulting a second opinion, the physician only confirmed the original diagnosis 12 percent of the time. Among those with updated diagnoses, 66% received a refined or redefined diagnosis, while 21% were diagnosed with something completely different than what their first physician concluded.”

With such a divergence of medical opinions whom shall a patient trust? More and more people are seeking advices from their peer patients visiting social networks.
Indeed, survey of 1,060 U.S. adults by PricewaterhouseCoopers on healthcare and social media showed that 42% of consumers have used social media to access health-related consumer reviews (e.g. of treatments or physicians). Nearly 25% have posted about their health experience, and 20% have joined a health forum or community.

Conclusion.
Patients are already fully engaged in healthcare. Medical establishment, however, tends to ignore their efforts largely because those are independent initiatives. Let us not forget that the Latin word for “doctor” is “docere” meaning “to teach”. Will a teacher allow a pupil to undermine his role?

So why at all physicians give themselves a burden to discuss with patients their health conditions? The main goal of a physician in involving patients in the process of care is to obtain his\her consent and formal signature and thus to delegate responsibilities.

However, field of medicine is still largely the realm of opinions driven rather by administrative or financial reasons than hard facts, which adds a big subjective component to a seemingly scientific discipline. This fact alone may cast doubts about the scientific correctness of doctors´ decisions.

 

Prologue.
Here are my 2 days in a hospital sitting at the bedside of somebody who is close to me.
A patient was brought to the nearby regional hospital in Freising (about 50 km from Munich) with a strong vertigo. Ironically it was the same hospital he visited 11 years ago when his first acute stroke happened.

At that time the reaction was fast: he arrived to the hospital within an hour being fully conscious, with no visible manifestations of neurological syndromes. It was Sunday evening. Bad luck: no neurologists in the clinic. The patient was left with no help for 10 hours in the emergency till neurologists returned from their weekend the next morning.

Unfortunately, the stroke did not want to wait. Coming with the mild dizziness and high blood pressure the patient was discharged from the hospital with the left side Paralysis. No wonder he has developed an aversion for Freising. But there were rumours that things had positively changed.

This hospital is now under the supervision of the famous  Rech der Isar  clinic with the outstanding reputation and highly qualified personnel. Even telemedicine is now available to compensate for the lack of Freising’s resources: one can presumably set up videoconferences with Rechts der Isar experts. I have signed a document confirming that I have no objections against such services.

As we arrived, the vertigo got stronger. I had to take a roll chair to get the patient to the reception. The lady at the desk was preoccupied with papers we had to fill in barely glancing at the patient sitting in front of her.

After 2.5 hours of waiting at the Emergency ward the patient was not at all better. I had to inquire the information desk if the nurse could come to fetch him up. The cool glance and the short snap:” we are doing our best with the resources we have” immediately reminded me about my place in this milieu.

Luckily in the next 15 minutes a nurse appeared. The doors of the emergency department closed behind them. Another exhausting hours of waiting full of uncertainty. But this is OK. We all understand that medical examinations take time.

I was staring at those sacred doors together with other relatives, friends and caregivers with the same burning question: what ‘s now? The question hanged in the air. Finally, my prayers were heard: through the half-opened doors I saw my patient stumbling but definitely targeting toward the exit. Ignoring strict orders: „do not enter” I have rushed to assist him. Being left for another 1.5 hours alone in the room with no info he was apparently planning an escape. This was not rational. But understandable: being in the hospital one feels vulnerable, nervous and completely neglected. Just a short friendly phrase, clarification of what is coming next would have made a great difference.

Day 1.
Day one was the anxious attempt to get the results of preliminary medical investigations. I arrived at about 12 pm, since according to my knowledge, all medical checks and hospital rounds should have been more or less completed by that time. The patient I was visiting looked extremely week. Vertigo continued. I hoped to get the results of the Computer Tomography, but had no idea whom to address. Nurses were rushing through the corridor, but there were no traces of physicians. Other patients in the room told me that there was no ward round that day, only a junior assistant popped in. It was absolutely not clear who was responsible for a given patient. The only way for relatives to get some info was a window of 45 minutes (between 15.15 and 16.00). And that is for all of us including patients.

At last I got him. Exactly between 15.30 and 16.00 a slender and brisk chief doctor was standing in the corridor chatting amiably with a group of ladies. The name of my patient apparently did not ring a bell. No wonder: he has not seen him so far. Slowly some associations between a patient and his records were revoking in his memories.

The patient was diagnosed with the left side cerebellum stroke. It was one of those “silent strokes” one does not notice right away. According to the Chief Doctor, it was “not fresh”, hence no urgent therapy was required. The doctor was honest: he could not explain the reason of the continuing vertigo. He was a cardiologist, not a neurologist. More examinations and the consultation with the neurologist have to be done in the course of the week to understand the problem. Fair enough. But the patient was already 1.5 days in the hospital. Was it not a sufficient time for a neurologist to visit him?
Day 2.
We were awaiting neurological examination. I managed to grab the assistant doctor who was careless enough to stroll through the corridor. He was young and still had some glimpses of sympathy in his eyes. Unfortunately, he also could not provide a reliable information being a cardiologist. The neurological department was on the same floor. But it seemed like on another side of the planet.

Time tickled. It was Friday 17 pm. At 17.30 the assistant entered the room announcing we can go home. I could not believe my ears. Seeing my bewildered expression, a young man shyly added: we have only one neurologist and he will be back on Monday.

Again, the same nightmare as 11 years ago: our health, the health of our beloved ones depends on a presence of a single physician. What about the potentials of telemedicine, the virtual consultancy with experts from the Rechts der Isar promised in the documents I have signed at the admission? Perhaps technology was there, but apparently used only for exclusive cases. Ours did not seem to be among them.

The received medical conclusion contained multiple descriptions of test results as well as copy and paste from the previous documents. The diagnose was: Neuritis vestibularis. So, where the problem lies? In the inner ear infection or a poor blood circulation leading to the cerebellum stroke? And what to do to prevent another one? There was nobody around to answer. The neurologist was already enjoying his weekend. The doctors’ letter contained some unknown names and the lonely signature of the poor assistant.

It was an outstanding example of a virtual care: several medical persons provided test results, somebody processed various documents. Based on this composition diagnosis and care pathway were recommended. Maybe there was a thorough thinking process behind, but it was hidden from us.

So, how about those sacred relationships between patients and doctors? Hand shaking, eye contacts that are considered to be so valuable for diagnostics and care that no technology can substitute? What about patient’s engagement in the decision process? All those questions seem to be just rhetorical.

Epilogue.
We are still struggling. Vertigo is going on. Our general practitioner recommended the same medication treatment this patient was taking for 10 years ago, although his health situation has apparently changed.

Recently I have read a thought provocative study on unwarranted regional variations in German Healthcare provided by  Bertelsmann Stiftung  which I do recommend everybody to check on. It appears that the quality of care we receive very much depends on geography we live in: availability of the right specialists in the area, their personal professional experiences and skills, last but not least availability of resources, such as medical equipment etc.

As a citizen and a patient, I would also add – bureaucratic culture still prevailing in some parts of medical environment. Culture that prioritizes documents over patients, impersonal protocols over individual care, formal procedures over curiosity to solve a problem.

While leaving the hospital I saw a slogan written on its walls: “you are here to become healthy again”. Were we part of the system’s occasional fault or its fundamental failure? Or maybe we were simply in the wrong time in the wrong place?

 

 

 

Health data are exploding, expected to grow by 48 percent annually coming to 153 Exabyte in 2013, according to the report from EMC and the IDC research firm. If the trend continues (and there is no evidence that it will stop), this figure will swell to 2,314 Exabyte by 2020.

Imagine: “should all patient data be stored on stack of tablet computers, by the 2013 it will be 5,500 miles high. Seven years later, that tower would grow to more than 82,000 miles high, bringing you more than a third of the way to the moon!
No human brain is able to cope with such an avalanche. There are about 10,000 known human diseases, yet doctors, squeezed between 10 minutes allocated per patient visit, are only able to recall a fraction of them at any given moment. To help providers to navigate and not to drown in the oceans of data Artificial Intelligence (AI) technology comes into the picture.

By analysing enormous amount of data (patient’s records, X-ray and images, endoscopies, even social networks, etc. within seconds, identifying repeatable patterns and learning from mistakes, this technology promises to extend (or in certain cases) surpass human intellectual capacities. Stanford researchers, e.g., were able to create an algorithm that is flagging abnormal readings from a standard ECG identifying heart conditions such as atrial fibrillation or complete heart blockage with greater sensitivity and precision than certified physicians. Researchers from Showa University  in Japan can recognise bowel cancer in less than a second with 94 percent accuracy. More convincing evidences of AI advances are coming.

Healthcare system have to adjust to innovations. What fundamental changes can be expected?
Farewell medicine.

Medicine Doctor Hand Working With Modern Computer InterfaceOne of the fundamental changes AI can bring to healthcare systems is the obliteration of the traditional European medicine. Medicine as the discipline focused on curing diseases primarily with the help of medication and interventive surgeries will dissolve in healthcare interpreted as an attempt to support healthy condition of each individual as long as possible. Technology can help physicians to proactively address human organism not as a sum of separate parts, but as an integrated system.
According to Epic Systems founder and CEO Judy Faulkner:” Artificial intelligence, machine learning, and big data analytics should help providers make sense of how different aspects of a patient connect to one another.”

Physicians who are treating patients suffering from complex diseases with multiple disorders know very well: curing each symptom does not always make a patient healthier. For instance, one can confine the cholesterol from rising above a certain level with statins, maintaining the systolic blood pressure under 130 mm Hg, restrict the glucose levels from rising beyond a prescribed level, but still more disturbing signs may appear. As if our body resisted to controlling various symptoms in order to signal systematic problems underlying clinical manifestation of the disease.

Cancer is one of the vivid examples of a systematic disease. One has to consider enormous amount of external and internal risk factors such as age, family history, radiation or pollution, bacteria or viruses, etc. to understand the origin of cells mutation.

The UK’s National Health Service (NHS) and Intel are working together to make cancer detection more efficient through AI. Initially focusing on the lung cancer, a team of scientists, hosted by the University of Warwick’s Tissue Image Analytics laboratory, have been creating a digital repository of known tumour and immune cells based on thousands of human tissue cells. The database of cancer information will then be used by algorithms to recognize these cells automatically.

Unlike traditional contemporary healthcare that are focused on sequential treatment of explicit clinical presentations of the disease, the future synthetic care might be able to look at the patient through holistic lenses analysing biological complexities of the whole organism, taking into account interaction of its subsystems and genetic patterns.

Smart patients.

Better-health-appNew generation of “smart patients” will appear. No more those “patient” patients submissively swallowing everything that doctor is prescribing them. Artificial intelligence might enable people not just to see their health data, but to understand them.
One can imagine in the future personal intelligent advisor, sort of “mini-Watson” on any kind of smart devices.

Applications teaching people to understand the complexity of health information are coming out.
The British subscription, online medical consultation and health service, Babylon launched an application which offers consumers medical consultation based on their personal medical history and professional medical expertise. Users report symptoms of their illness to the app, which checks them against a database of diseases using speech recognition. After taking into consideration the patient’s history and circumstances, Babylon offers an appropriate course of action.

Ada is another example of a personal health advisor developed by the Berlin and London based start up. Via a conversational interface it helps to specify symptoms suggesting information on what might be the cause of the disease. If needed, the application can recommend a remote consultation with a real doctor over text.
Upcoming sophisticated and more accurate sensor enabled devices supported by intelligent applications will gradually make patients into active and knowledgeable participants of care processes.

Smarter physicians.

SmartDoctorsRobots will hardly wipe away physicians. So far, they are not possessing human qualities such as imagination, curiosity or empathy necessary to do a good job in healthcare.
According to Gartner’s research director, Manjunath Bhat “Robots are not here to take away our jobs, they’re here to give us a promotion. By 2020, artificial intelligence will generate 2.3 million jobs, exceeding the 1.8 million that it will wipe out. The public sector, healthcare and education are expected to benefit the most.”

Promotion means new responsibilities and higher demands. Being freed from routine operations, necessity to memorize a lot of details that machines can do better and faster, our doctors will have to augment their knowledge and skills to the new level. They have to be smarter to meet expectations of smarter patients. Those patients will require Value, and not just Services, meaning they want to feel themselves better after treatments, not just receiving it.

Think about diagnostics. World Health Organization (WHO) recently prioritized diagnostic errors in primary care as a high-priority.
”A study conducted in a high-income country found that approximately 5% of adults experienced diagnostic errors in outpatient settings each year. Over half of these errors had the potential for severe harm. Delays in diagnosing cancer are common. About 7% of abnormal test results are not communicated to patients, which can lead to a delay in diagnosis.”

AI technology can help physician to perform a pervasive diagnostic of individual’s health status. For example, by using immune system, our personal hundred-eyed Argus body guard. T-cells and B-cells are constantly scanning our entire organism encoding information about any damaging changes. Microsoft and Adaptive Biotechnologies, another US company, have recently partnered “to build a universal blood test that can screen for dozens or even hundreds of diseases at a time, all by decoding the information in your immune system.” If the project is a success, scientists and physicians will be able to detect almost any disease even before it reveals itself.

Our doctors will have to be able to navigate in multiple interdisciplinary areas. Imagine that a gastroenterologist is looking at the CT scan to check on the appendix, but the computer system has identified the nodule in the lung as well? Nobody can achieve a universal competence in any brunch of science, but one can learn fundamental principles. Hence the new medical education built on natural sciences will be required. After all, are humans not part of the Mother Nature and thus subjects of the same laws of physics, chemistry, biology as animated objects?

All living organisms obey the laws of thermodynamics. Principles of computational fluid dynamics (CFD), a mechanical engineering field for analysing fluid flow, heat transfer in fluids, and associated phenomena with the use of computer-based simulation, are already applied to diagnose cardio-vascular diseases. Moreover, many types of ventilators used in modern medical technologies wouldn’t be possible without an understanding of fluid pressure and pulse frequency.

Association of American Medical Colleges has stated in its Scientific Foundations of Future Physicians report: “modern medicine requires the ability to synthesize information and collaborate across disciplines”. The committee also recognises “the value of improving integration in the teaching of the basic physical, chemical, mathematical, and biological sciences in medical education”.

Artificial Intelligence can provide physicians with deeper insights into patient’s conditions based on great variety of clinical, social and environmental data and achieve better diagnostics and more personalized care. But it will also demand ability to constantly operate in new fields of knowledge, challenging themselves rather than relying on habitual practices, experience and standard medical protocols.
“Curiosity, scepticism, objectivity, and the use of scientific reasoning” (Association of American Medical Colleges) should be the vision of the future healthcare which technology will hopefully stimulate.

 

 

DoctorsSharingInfo

Patients data protection is a high priority for governments and IT vendors. Many projects were delayed or banned because of the security issues. Electronic Health Record (EHR) project in Germany discussed for years eventually was reduced to the modest health insurance cards data set not accessible for patients.

Patients data protection is crucial: Accenture estimates that one in 13 patients – roughly 25 million people – will have personal information, such as social security or financial records, stolen from technology systems over the next five years.

Healthcare apparently is going through the cycle that industries such as finance, retail or manufacturing went through decades ago. Nevertheless, almost everybody nowadays has at least once or twice tried online transactions ordering goods or services over Amazon, eBay or other internet platforms. For many, it is the only purchasing option.

What makes Healthcare so special and what can stand behind the security concerns?

 Once I happened to attend a patient in the Intensive Care Unit (ICU) in one of the respectable hospitals in Munich, Germany. A person was initially treated in neurological department and delivered to ICU after cardio surgery. Noticing a computer in the room I have asked the attending nurse if it was possible to see this patient’s data. “Sure “, she said clicking on the screen. The SAP system showed me the standard data set: name, gender, age, etc., plus everything that was performed and captured in ICU. Knowing that SAP system scales all over the hospital I have assumed that doctors in ICU may be curious to see what initially had happened to the patient before he was brought to them. “Is it possible to see the patient’s history from here? “, I have politely asked the nurse. “Theoretically yes, but practically not. Our doctors do not like to share patient’s data, they prefer to owe them all.” Seeing my bewildered expression, she added: “if something goes wrong, who would like to flag it?”

It seems that physicians in the hospital I have visited are not unique. Still we see silos of isolated IT systems in many hospitals. And this is not just the technical interoperability issue. This problem can be solved. Fears of being blamed if something goes wrong are still deeply rooted in the medical culture. According to the National Centre of Biotechnology Information (NCBI) resources evidence suggests that actual disclosure rates of errors in hospitals were as low as 6%. Physician’s concerns over disclosing medical errors due to ensuing litigations was also confirmed by NCBI study of 276 randomly selected doctors.

The conclusion was the following: “Most doctors in this study would not disclose medical errors although they perceived that the errors were serious and felt responsible for it. Poor disclosure could be due to fear of litigations and improper mechanisms/procedures available for disclosure”.

Security concerns are often disguising purely pragmatic and commercial interests. Thus, according to Pew Internet & American Life Project study “nearly one in three doctors said they withheld medical treatment from patients if the services weren’t covered by health insurance”. So, for example, if there is a new medication coming out that potentially can cure a patient better, your doctor is at risk of prescribing it because the health insurance does not have this medication on the list of the drugs it is bound to finance.

The reluctance to share data especially with patients can have purely phycological reasons deeply rooted in paternalistic medical culture: patients are considered simply not worthy to be informed about procedures related to their own health. Thus according to Forbes two-thirds of doctors, members of SERMO, the leading ‒ if not the largest ‒ social network exclusively for physicians, were reluctant to share health data with patients, because “Full access also means generating questions for which there is no time to lecture the patient”.

One of the comments, supported by several physicians, went even further:” The records remain private property of the physician who generated it for the care of the patient. If the patient doesn’t like that fact then they can go elsewhere

What patients think about sharing their data?

DataSharing

 

There is always a trade-off between security and comfort, between safety and ability to help. Patients are apparently prioritising care and willingness to help others over security and data protection. They are willing to share their feedbacks on treatment outcomes, the way the disease is progressing, their own personal data, because they believe such assistance can improve care and support innovations.

Thus, according to the Rock Health study80 percent of respondents would share their health data if it meant getting improved care, while more than half said they’d share it for medical research purposes”.

A survey of 2,125 PatientsLikeMe members showed that 94% would be willing to share their data to help doctors improve care; 94% would be willing to help other patients like them; and 92% would be willing to share to help researchers learn more about their disease.

Desire to learn from each other is another incentive for patients to share their health data especially with those who successfully coped with the same disease. The study published by Annals of Internal Medicine analysed the blood glucose control of 120 Afro-American diabetic patients, the latter being randomly divided into three groups. The first group has received the usual care from their doctor; those from the second one was offered up to $200 if they could improve their glucose control over time; patients from the third group were assigned as mentors to fellow patients who managed to control their diabetes.

After six months, the only group of patients who had significantly improved their blood sugar control was the group with peer mentors.

The altruistic yarning to help their peers inspires patients to create their own communities. Platforms, e.g., PatientsLikeMe or Webicina not only are giving people a soothing feeling that they are not alone in their sufferings but provide invaluable life experience of those millions who, when properly analysed, can suggest new and efficient ways of therapy.

The demand for patients facing IT as user-friendly patients’ portals, personal health records and mHealth applications is high. Thus, Kaiser Permanente,  an institution that has used portals for over a decade, reports that as of the third quarter of 2015, about 70% (5.2 million patients) of eligible adult members registered to use its My Health Manager patient portal.

Conclusion

When you suffer from anxiety and pain your first priority is to get help. Patients know this and thus are willing to share their data hoping to improve care, support research and  promote innovations. Security concerns should not be underestimated, but after all it is a technical and policy issues that can and should be solved. However, there are many psychological and behaviour problems deeply rooted in medical culture and structure that are disguised under the security umbrella. Fears of litigations, career damages, financial restrictions still dominate over the desire to capitalize on mistakes, promote new treatments and improve  patients care. Until these barriers exist the flow of information across  care, detrimental for diagnostics and innovations, will be hindered under all sorts of pretexts, with numerous data protection acts being the main of those.

 

Suddenly my farther had chest pains. The emergency has arrived, and ECG was taken. I was of course eager to learn the results immediately. “You need to study six years to understand it”, snapped the doctor. “Your GP will inform you in due time”.

I was appalled. After all I had a university degree and many years working in the Health IT area. Am I really uncapable to understand the ECG readings? The next step was to go online to study ECG interpretations. For sure by now my knowledge is not up to the level of professional cardiologists, but at least I am able to see if something is wrong with ECG waveforms.

Patients health illiteracy stems from their fears and pains, and consequently: the desire to delegate the problem to somebody who allegedly can solve it immediately, be it a doctor or God. Medical professionals tend to exploit these feelings to reinforce their medical authority. Thus, a study on the observed behaviors of specialty physicians showed that “less than one doctor out of every four ever gave the patient an opportunity to participate in any type of decision making at the surgery”.

One of the typical statement: “while patients have expertise in their own experience of symptoms, they typically have minimal knowledge about their diagnostic journey to an unknown destination. The patient does not necessarily know what information is valuable for diagnosis, or when to be concerned that diagnosis is off track”.

With all respect to a six years’ diligent medical learning curve, I started believing that there are certain advantages that people coming from other industries can contribute to enhance health knowledge and care.

Approaching health: from general to specifics

PatientandInernet

Medical professionals undergo long years of studying which requires a lot of efforts and memory strains. One has to cover general subjects such as anatomy, physiology, biochemistry, microbiology and then dive into specializations. The methodology of learning and thinking is based on the vivisection of human body which is reflected in the contemporary structure of medicine being split between various fields such as gastroenterology, cardiology, nephrology, gynecology, oncology with various localizations, etc. The logic of this structure presupposes that if all organs are functioning properly a person should be healthy, which, unfortunately, is not the case. In complex systems the total is not equal to the sum of its parts.

Patients with professional engineering or scientific background are in the first instance applying a holistic approach to multifaceted subjects and after that are going into specifics.

For example, a physicist dealing with complex objects will first study an entire system, specifying its behaviour by overall macroscopic characteristics that are determined by some average system properties such as, e.g., temperature. One cannot describe, for example, the Universe by studying separately “dark matter” or comprising atoms. Likewise, one cannot understand the Earth climate by investigating the behaviour of separate molecules in the atmosphere.

An engineer, while checking the state of a nuclear power station, will not be satisfied if a steam generator or pressure vessels alone work properly. The latter being subordinated to the principal goal that is generating electric power ensuring the overall safety of a nuclear reactor.

Likewise, a patient, e.g., with scientific or engineering training while studding the nature of diabetes may challenge doctors with basic and seemingly naïve questions: what is the glucose metabolism in the body? What set of organs is entangled and what are the main functions of those organs? What chemical substances making up the interaction between such organs, in particular hormones, are involved?

This deductive reasoning that moves from the general rule to the specifics may not be sufficient enough to provide all the correct answers, e.g. in complicated cases, but can certainly help posing meaningful questions. A big leap forward.

Medical professionals, however, are often taking quite the opposite – inductive – approach trying to derive the general and indivisible state of human health from the behavior of particular objects (the body organs). At least that is how it is seen from a patient’s’ perspective. While talking to e.g. diabetics’ patients many physicians tend to enumerate to a patient the abundance of affective factors such as bad nutrition habits, wrong life style, previous diseases or semi-mystical genetic influence. However, it is not obvious from such discussions which factors are relevant for a specific metabolic function of a given person.

In essence educated patients tend to look at the human organism as a system, while medical professionals are often concentrating on its separate parts.

Patients’ intellectual “dive down” approach in understanding their diseases proves to be fruitful.

The study conducted among patients with Diabetes type 1 (DM-1) who went through education course and reported of positive changes in their condition showed that the participants emerged from the course with greater condition-specific knowledge than many of the healthcare professionals they encountered.”

However, “patients who have in-depth knowledge of their condition encounter problems when their expertise seen as inappropriate in standard healthcare interactions, and expertise taught to patients in one branch of medicine can be considered non-compliant by those who are not specialists in that field”.

 The statement provokes two observations. First, some doctors are still considering an educated patient as an unnecessary challenge and a threat to her/his dominant position in healthcare. Second, many physicians are “locked” within the domain of their specific professional expertise, having difficulties in reacting to information flowing from external knowledge domains.

Conclusion

HealthlitrtDespite more than three centuries of the development of modern physics, mathematics and based on them successful engineering disciplines, medicine has not yet come to grips with the worldview and methodology adopted in natural sciences. Note, however, that most achievements of modern medicine are based on the techniques imported from experimental physics and applied mathematics (e.g., magnetic resonance imaging (MRI), computer tomography (CT), acoustic methods such as ultrasonic investigations of inner organs and blood flow, dynamic mapping of vessels, brain, muscles, glands, etc. showing metabolism and oxygenation in corresponding tissues, optical and laser methods, e.g., analysis of spectra of scattered light and so on. Naturally some technically savvy patients can be of help in dealing with certain complex explorations.

Education journey in Health is still a bumpy road. It requires support both from communities and governments. Medical professionals have to cope in future with new interdisciplinary natural science subjects to develop new methods of integrated health state analysis. Citizens, on the other hand, are to increase their knowledge of human anatomy and physiology.

Systematic health education in understanding the functioning of the human organism, physiology and biochemistry should start early at school. This will increase the level of health literacy among citizens, while allowing medical students to concentrate in their years of studying on new trends in medical science as well as cross-border sciences such as bioengineering, biophysics or genomics (including computer genomics).

Health literacy should be part of the standard European culture. Let us not talk just about “educated patients”. Let’s struggle to build an educated, cultural and healthy society.

 

 

 

 

Successful outcome of care as well as patient’s relationships with physicians very much depend on the quantity and quality of information that flows between all the participants of therapeutic process. Despite  wide spread of Electronic Health Record (EHR) in Europe, there is almost no country with its full adoption which would imply smooth data streaming across care including information exchange between patients,  general practitioners (GPs) and specialists.

According to the EU Commission Benchmark deployment eHealth among general practitioners study less than 10% of the respondents claimed that patients ‘remote monitoring and consultancy are available in their practice. Training/education and consultation with other healthcare practitioners are used by 35% and 15% of GPs respectively”.

eHeatlthGraph.png

Apparently, eHealth that is healthcare practice supported by electronic processes and communication – is not yet ubiquitous in medical environment.

Is it only the technical issue (e.g., interoperability infrastructure) that prevents technology adoption in care processes? Or there are also mental barriers deeply rooted in medical culture that impede information sharing between all the participants of care including patients?

Pervasive mythology: patients are too sensitive (ignorant) to participate in care program.

DoctorsSuperiority

At the dawn of European medicine, the “seclusion” of medical profession was the logical consequence of limited knowledge regarding human physiology and unpredictability of treatment outcomes. “Ars Medica” traditionally was the domain of those who exclusively possess the sacred knowledge of healing. Patients did not belong to this elite and were doomed to endure patiently all manipulations performed upon them. A patient basically had to blindly trust a physician. The less patients knew, the more faith they had.

Through centuries this stereotype has undergone some “modernization”, however it is still entrenched in medical community. Instead of a blunt statement that patients are ignorant by default it is now elegantly argued that they are too sensitive (or medical information is too complex for laymen) to face their health conditions.

Patients’ alleged fears, unwillingness to accept bad news are pushing physicians for additional unnecessary tests and examinations which are expensive and harmful. The logical conclusion derived: physician should filter information patients are receiving for their own benefit.

The advance of Information and Communication Technology (ICT) made health knowledge more accessible stimulating patients’ engagement in healthcare process, one of the triggers of the global healthcare system transformation. However, the old paternalistic mentality is still deeply rooted in medical culture. This perception often tends to block technologies that facilitate information flow between patients and care providers.

Thus according to  survey  provided by WebMD and Medscape :

DoctorSpeaks

“91 percent of US doctors believe that giving patients full access to their detailed electronic medical records could cause anxiety about results while 84 percent felt it would lead to unnecessary requests for more medical tests.”

Another survey conducted by SERMO, a large physician social network, found that the majority of doctors when asked, “Should patients have access to their entire medical record – including MD notes, any audio recordings, etc.?” two-thirds of 2,300 physicians said no. Nearly half of participants agreed that this disclosure should be given on a case-by-case basis. One doctor alluded to the old proverb that “ignorance is bliss” when it comes to telling people about their health. People don’t take bad news well.

Patients, however, think differently. Medscape survey showed that patients are much more savvy for technology willing to use it for better health management.

happy-cartoon-boy-jumping-and-smiling3

 84 percent of patients think that technology should be used by patients to assist in the diagnostic process while only 69 percent of doctors thought it was a good idea.”

“89 percent of patients said they should be allowed to see all the notes their physician takes during a visit, however only 64 percent of doctors are in favor of sharing”.

While the discussion about the level of patients’ engagement in healthcare continues vehemently in media and medical publications, patients have already started with simple but important things such, e.g., doing their “homework” to make medical appointments more efficient.

The study of Nuance Communication among primary care in US, UK and Germany showed that

happy-cartoon-boy-jumping-and-smiling3

“68 percent of patients bring a list of questions to their appointment; 39 percent have checked WebMD or an online source in advance of their visit 20 percent are bringing data from outside monitoring devices to share with their physicians. When asked “how engaged do you feel in managing your own health?” 80% of the respondents said that they were “very engaged.”

At the end of the day, it is a patient who ultimately evaluates the quality and the outcome of care with his own health.

PatientEducation

A proactive patient can be an invaluable partner in care journey and one of the best gate keepers for medical errors. He or she can track records circulation between various participants of the care process, ensure test results and follow ups, discovering communication gaps that can lead to errors.

“Up to 80 percent of serious medical errors can be attributed to miscommunication among medical staff while transferring patients” according to the Joint Commission, a group that sets safety standards and accredits healthcare organizations.

Typical situation many probably have faced: a nurse is coming with the anticoagulant injection required after the surgery. In 40 minutes enters another one with the same injection. Even worse scenario can happen: insulin injection several nurses in shifts were trying to perform to the same patient. Fortunately, a person was on guard and vehemently objected.

A survey in 7 primary care practices in North Carolina of English – or Spanish – speaking adults showed that 15.6% of surveyed patients responded that a physician had made a mistake, 13.4% reported a wrong diagnosis, 12.5% a wrong treatment.

The discovery of additional unreported errors is hardly welcomed in paternalistic culture. Thus a Canadian study on pediatric hospital admission found “that patients and their families are willing and able to report valid safety concerns, but only less than 3% of those had been identified by the hospitals’ own safety-monitoring program”.

The belief that patients are not capable to fully participate in healthcare process due their “emotional instability” leads to the logical conclusion that information coming from a patient may not be reliable. That explains the skepticism towards Patients Health Records (PHR). According to Medscape survey :

DoctorSpeaks

“Patient portals have achieved a high degree of penetrance into clinical practice, with nearly three quarters of physicians reporting their integration at their main practice site. However, the majority of physicians 53% said that they almost never use PHR to communicate with patients.”

Patients, again, have a different view. They reported to have lower availability of patient portals than physicians; however, are significantly more likely to using them.

happy-cartoon-boy-jumping-and-smiling3

Just 13% of patients reported “never using” a patient portal; nearly one half reported using a patient portal at least occasionally, and nearly 20% reported using one “almost always” or “always.

The concerns of “desacralization of medicine”, expressed by those who were used to justify authority by wearing the “white robe”, fears of losing influence on patients when the latter fully access their data ”, are unjustified.

Thus, the EHR Patient Impact study showed that those patients who are using EHR can better understand the treatment procedures and thus have more respect towards physicians’ efforts. 78% of the surveyed patients using EHR were satisfied with their doctors compared to 68% who did not.

So, who ultimately has more fears: patients struggling to do their utmost best to engage in care to cope with the disease or those medical professionals who are trying to restrict communication through technologies for the fear of error disclosure and credibility loss?

Conclusion:

Engaged Patient

Patient’s engagement in care process is still a wishful thinking. However, health information accessible via internet, advance of personal health technologies stimulate people to proactively participate in healthcare process.

Patients are often more technical savvy than health providers, more willing to offer their partnership in care journey than health providers to accept it. To certain extent this is understandable: patients are looking for improvements, providers – not to lose what they already got.

Nevertheless, medical professionals should accept that they are dealing now with the new type of patients: more educated, more proactive to manage their health. The trend is sustainable, and it is good so. Just like educated reader can enhance the quality of literature, an educated patient can stimulate health providers to aspire for long life studying for the best outcome of care.

Is it not what we are all willing?

 

ChineMedicinepulse Human senses initially emerged as a survival tool were a valuable clue for ancient physicians to spot the disease. While examining a patient a doctor would carefully touch his limbs, smell his breath, listen to minute body sounds and even taste his urine thus checking the human body without violating its natural functioning nor demolishing natural conditions. Just like animals who are identifying sick species by sniffing.

The European way of medical diagnostics, on the contrary, drifted towards using interventive methods. Examples are numerous. Take, for instance, the ubiquitous “sugar curve“, a colloquial name for a glucose tolerance curve (whose linear part is usually known as a dynamic range). A subject should drink or to be injected a glucose-containing solution until the blood sugar concentration rises to a dangerous level: some diabetic patients, especially those suffering from DM-1 (diabetes mellitus type 1) or from intermediate type, can experience very unpleasant effects, even faint or be driven to coma, which necessitates rush recovery measures. Another example is the treadmill stress test that is routinely (and indiscriminately) used by therapists to check the blood flow through heart, even for patients with cardiac arrhythmias, coronary or aortic stenosis, severe arterial hypertension, myocardial infarction (MI) and other cardiovascular failures. Such interventions, though accepted and even popular in the physicians’ milieu, should gradually be abolished. One should strive to non-intrusive diagnostic techniques.

Can the upcoming personalized sensor technology be used to augment our senses to distinguish various types of diseases in a measurable and precise way?

Smelling the disease. 

na-nose-technion

Each of us has a unique “odor print” made up of thousands of organic compounds coming out with body fluids or breath that reveal gender, lifestyle and metabolic processes related to a particular health condition. For example, the breath of diabetics sometimes smells of rotten apples, the skin of typhoid patients might smell like baking bread, liver and kidney diseases can make breath smell fishy, while schizophrenic people carry a component called trans-3-methyl-2 hexenoic acid whose scent has been described as over-ripened fruits. So, each disease can have its own unique breath print.

 Evidence now shows that those vaguely perceived odors can be translated into precise biomarkers indicating a particular disease. Thus  Owlstone, the UK manufacturer of chemical sensors Cambridge, England has raised $23.5 million to design technology able to analyze odors for clinical usage.

The core of the technology is a miniature sensor with tiny gold electrodes that can be installed in a mobile phone just like a SIM card. The sensor functions as a chemical filter. When molecules are coming out with the breath they are ionized, then the tiny electric current transfers the chemicals of disease in question through the channels carved on the chip, where they are detected and analyzed depending on biomarkers. Today the technology can be used to identify, e.g., lung or cologne cancer. The company is now conducting a 1,400-subject trial, in collaboration with the University of Warwick, to discover whether its chips can help to determine the optimal drugs for asthma patients by sorting through molecules in their breath.

A few years ago, similar approach was taken by the Israeli Institute of Technology of researchers under Prof. Hossam Haick. During breathing a person emits the so-called “volatile organic compounds” which are specific for each disease. Na-Nose, the breathalyzer developed by the team, picks up those components to distinguish between the diseases.

The device can now detect more than 1,000 different gases contained in the breath that may indicate various types of illnesses. The technology was tested with breath samples from about 1,400 people in various countries, being able to accurately diagnose disease almost nine out of 10 times. According to Prof. Haick “with lung cancer alone the Na-Nose’s ability of early detection can raise survival rates from 10 percent to 70 percent”.

What your voice can tell you.

26735582-young-urban-businessman-on-smart-phone-running-in-street-talking-on-smartphone-smiling-wearing-jacke

Years ago, I was attending a relative, a senior person recently operated with several bypasses. Seeking a second opinion I called my friend, a cardiologist. “Give him the receiver”, he snapped immediately. “I need to hear his voice.”

It seems our voice can speak on behalf of our health. It can be husky, raspy, hoarse, weak, loud, etc. associated with various types of diseases. Hoarseness, for example, can be a sign of a simple laryngitis, but also of autoimmune conditions such as rheumatoid arthritislupus or scleroderma. People with congestive heart failure (CHF) can have shortness of breath, fatigue, irregular heartbeat and more disturbances which are causing the alteration of their voice.

Would it be possible to quantify those intuitively perceived voice characteristics and identify voice biomarkers such as specific amplitude-frequency characteristics that may signal a concrete disease? Latest scientific evidence proves that voice biomarkers can be used for early diagnostics even more effectively than a routine medical checkup process. In the future, one may not need to travel to a clinic for an appointment with a doctor. Your physician can simply listen to your voice pattern over a smart phone.

Researchers from Mayo Clinic in cooperation with Israeli company Beyond Verbal presented their discoveries at the American Heart Association Scientific Sessions in New Orleans, Louisiana, in December 2016. Scientists assumed that hardening of arteries during chest pain may affect the voice pitch, so it is possible to pick up early heart failure by listening to patient’s voice and registering specific voice biomarkers associated with, e.g., cardiovascular disorders. 150 patients enrolled in the initial study were asked to produce three short voice recordings using an app developed by Beyond Verbal. After the patterns were analyzed with the help of the machine learning, the researchers identified 13 different vocal features associated with patients at risk of coronary artery disease (CAD).

Scientists discovered that one specific characteristic frequency of the voice was associated with a 19-fold increase in the likelihood of coronary artery disease. This voice segments, not registerable by the human ear, can predict a certain degree of the blockages found by the angiography. The only way one can pick it up is by using the app’s software. Researchers believe that the vocal test app with the smart phones can be used for remote identification of patients possessing the risk of heart failure as well as for monitoring patients after cardiac surgery.

Sonde Health is another player on the arena. The company has launched a vocal biomarker analysis platform based on technology licensed from researchers at the Massachusetts Institute of Technology. While people chat over their habitual smartphones, the software is extracting from everyday voice interactions “vocal biomarkers” (such as dynamic changes in pitch and harmonics, articulation timing and hoarseness or breathiness) that potentially can signal ranges of disease including cardio failure, depression, mild traumatic brain injury (mTBI), concussion, cognitive impairment and Parkinson’s disease.

Certainly, the implementation of sensor augmented technologies provokes many questions. For example, what if a person deliberately changes his pitch or pretends to speak faster? In this case the test will not be reliable. Privacy and security is another issue. If a person’s phone is constantly bugged by a physician, why not by hackers? Precision and accuracy should also be further verified by continuous tests.

But at least it is worth trying. The advantages are also outspoken: early and pervasive diagnostics of disease that potentially can save millions of lives.

That healthcare is expensive is widely known. So, citizens should accept health services with gratitude and respect.

But looking at healthcare delivery model as a citizen and a patient (not as a professional healthcare administrator), one can spot at least three areas where money could be saved for the benefit of patients.

Avoidable hospitalizations.

General practitioners (GPs) are overloaded almost everywhere. As a result, patients are often too easily pushed to hospitals instead of being treated in the comfort of their homes.

A typical story: a man in Germany was experiencing a severe cough, dizziness, fever and breathlessness. Such symptoms can indicate a flue, bronchitis, but also sometimes heart failure up to the upcoming infarction. A local GP who appeared only the next day suggested an immediate hospitalization. Already surviving the night, a patient was apparently not keen on the perspective. ”Why to go to the hospital right now?” “Because – replied a doctor with authority – you have already had a history of heart problems. Besides I don’t understand why you don’t want to go to the hospital”. A surprise was so genuine as if she was proposing to drop into a nearby pub.

True, the sick person went through heart operation with several bypasses about 10 years ago. But is that a sufficient reason to drag him to the hospital exactly at the moment? Fortunately, this man urgently demanded the troponin blood analysis (protein found in heart muscle that are released into the blood in case of the heart damage) to rule out myocardial infarction. On top, he requested the ECG. Both analyses can be performed at home. The result on the troponin was negative. There was no urgent need for a hospitalization.

This case is not unique: according to the World Health Organization (WHO), 20% of hospitalizations in Germany in 2012 were preventable or totally unnecessary: in other words, the hospitalization of every fifth patient could have been avoided through timely and effective provision of ambulatory care.

The outcome of the story this time was positive. Another GP came diagnosing bronchitis and allowing the man to stay at home. It took about 20 euros to pay for the medications vs. thousands that could have been spent to cover a few days in a hospital. It was also a human factor that made the difference: the physician with the ambition to help his patient. The system was obviously prioritizing hospitalization over the ambulance care.

Bureaucracy vs. care.

stock-photo-serious-adult-female-medical-doctor-reading-medical-documents-on-the-table-with-one-hand-on-her-271306187

No doubt healthcare is a very complex business. It is proved by numerous medical protocols guiding medical procedures. “Primum non nocere” or “first, do no harm” is a fundamental bioethical principle every medical student is taught at school. It is better to do nothing, than to risk causing more harm than good to your patients.

However, blunt adherence to prescribed rules can cover professional incompetence and indifference.

Another typical story: a man in his early sixties, strong and sporty, suddenly felt dizzy. He diagnosed himself with the approaching stroke. Knowing that there is a window of three hours within which help should be delivered, he called the ambulance. Within those 3 hours a neurologist should perform a brain computer tomography (CT) to determine the nature of stroke. In case of ischemic (which is over 80% of all strokes), some of the blood vessels are blocked by a thrombus (fat or blood clot) that disrupts the blood flow from reaching certain areas of the brain to supply it with oxygen. The thrombolytic drugs can dissolve the clots, reestablishing the oxygen supply. The same treatment, however, can kill when a weakened blood vessel ruptures spilling out the blood into the brain. The so-called hemorrhagic stroke.

The arriving emergency took a man to the nearby hospital in the city of Freising (in Bavaria, Germany). Unfortunately, it was Sunday night. Worst time getting to the hospital as all specialists are fast asleep expected to be back the next morning. The assistant doctor on call this night was not an expert in reading CT brain images, nor was she allowed to. Only a trained neurologist can read the CT image to detect lesions in patients. So, the decision was simple: wait for the next shift of neurologists to come leaving this patient for 6 hours without any help in the emergency department.

Unfortunately, the stroke was not aware of such human constraints. It let itself develop. The patient in question was sitting meaninglessly before the assistant doctor on duty who diligently filled the lengthy protocol. “Better to do nothing” condemned this patient, who came to the hospital only with minor impediments, to years of paresis.

Should this doctor dare to wake up a neurologist, a man would have received a proper treatment, e.g., with thrombolytic medications, anticoagulants, antiplatelet agents, for instance, a simple heparin injection, as well as antihypertensives and peacefully returned home after spending a couple of days in a clinic. In extreme case, an endovascular device could be applied. The whole procedure would have probably cost several hundred euros. But alerting a colleague in the middle of the night was not mentioned in medical guidance. The logic of the caregiver that night was unassailable: nothing personal, I am doing my job according to instructions.

Recently I have learned that the Freising hospital had made an agreement with the large University clinic in Munich. Professional neurologists can now provide 24×7 remote video consultancy and in extreme cases personally come to Freising. I assume that the above described case was not unique, and the accumulation of similar cases eventually outraged both patients and authorities. But how many lives should be disturbed before the decision was taken?

Avoidable surgeries or cunning economics.

Unnessarysurgeries

Too often medical professionals resort to radical interventions without sufficient reasons. Money is lavishly spent on medical procedures, which are not only needless, but may be harmful.
Thus, according to AOK 2014 report (AOK is one of the largest German health Insurance houses): 19,000 deaths could be prevented, should unnecessary surgeries be avoided.

For a comparison: car accidents in Germany took away the same year 3.290 lives. The situation in the US seems to be no better. Avoidable surgeries might account for 10% to 20% of all operations in some specialties, including a wide range of cardiac procedures. According to the Medical Experts Online, the US company that provides patients a platform for a second medical opinion, in 66% of cases the first recommendation in favor of surgical intervention was found inappropriate.

Studies revealed that physicians were often “incentivized to perform surgical procedures, either for financial gain, renown, or both”. Many of them complained “surgery quota” was imposed on them by health administrators, due to the provisions hospital were getting from insurances for each operation. Considering that a surgery costs on average about 40K – 50K euro, the business seems lucrative.

James Rickert , MD, an orthopedic surgeon in Bedford, Indiana thinks that hospitals recommend patients to undergo surgery“ because they are paid approximately ten times more money to perform surgery than to manage one’s problem conservatively.

It is not accidentally that the modern healthcare system was traditionally focused on treating the disease vs. preventing it and supporting health. As one cardiologist with 19 years of experience formulated: “The key is that the early prevention won’t make profit. In treatment, operations like placing stent will be profitable, while oral education on prevention won’t make great financial benefit. Patients spend a lot when they get diseases”.

Perhaps such economics is good for insurances and some hospitals, but effectively it is just a money wasting: it is a patient who ultimately pays with both his money and health.

Professional health managers and scholars can provide deeper analysis on healthcare economy, but from a patient perspective the healthcare system we currently have is rather optimized for generating revenue than for the effective care. Paradoxically, in this way the system is losing both: money and efficiency.

 

 

 

Imagine: suddenly you feel dizzy. You simply press the button of your smart band, watch, necklace, etc. Your ECG, glucose level or blood pressure will be immediately checked, and Artificial Intelligence (AI) software will recommend simply to sip 20 mg of Cognac and peacefully go to bed. Would it be nicer than calling the emergency?

Indeed, promises of the 3d Digital Wave are breathtaking. With 70 percent of healthcare organizations worldwide investing in consumer-facing technologies, e.g., wearable sensors and related apps, patients are expected to receive virtual medical care anytime anywhere. Artificial Intelligence will compensate the lack of a human one. It will disrupt the existing healthcare system by delivering easily accessible, cheaper and higher quality care to 70% of patients by 2025. Researchers at Stanford University have recently compared 130,000 images of 2,000 different skin lesions into a computerized algorithm discovering that artificial intelligence was just as good as 21 board-certified dermatologists at identifying instances of skin cancer. By 2020, cognitive systems are expected to diagnose in minutes such chronic conditions as cancer and diabetes. 75% of all patients hope to witness such glorious metamorphosis.

According to the studies the second wave of digital health transformation has already provided European citizens with electronic health records (EHR), particularly in Germany.

As a patient, I wonder: where are all those treasures? Who is hiding them from me and other patients, and where? Entering a nearby hospital (by the way, in modern Germany) I have a feeling that those is who are writing futuristic those visions live somewhere in a different world, not in the one most of us, ordinary citizens temporarily grieve in. For sure, EHR has already been implemented somewhere, but as I was searching for an X-ray image buried in one of the hospital’s archive departments (not to be confused with Picture Archiving and Communication System/ PACS) I was, with many difficulties, provided with a printed film. An image depicted a spinal injury with no trace of a cardio operation that was, according to the records, performed upon the patient a week ago. Moreover, it was obvious that an image belonged to a woman, while the patient we were concerned about was unquestionably a male. The authentic image, by the way, was never found.

Insta-Pulse

Meanwhile, some of the technologies able to help millions in diagnostics and treatments have already existed for years. For example, the Canadian company Biosig Instruments has patented the InstaPulse® Heart Monitor that registers arrhythmias without the use of common 12-lead medical devices available only in hospitals, cardiology clinics and, sometimes, in advanced physicians’ offices. One can simply grasp the device with both hands and it will automatically turn on continuously updating your cardio rhythm. Note that irregular cardio rhythms are causing the formation of blood clots in vessels. The blockage of the vessel depending on the location can provoke congestive heart failure, ischemic attack or even myocardial infarction (with necrosis) and stroke. Though the device was registered as a “fitness gadget” (apparently to avoid the FDA hassle) it could be well applicable to cardio patients. Cardiological Clinic Aachen in Germany is now using almost identical device to treat their stroke patients.

MajicStick2

The Insta-Pulse® Heart Rate Monitor was invented by Dr. Gregory Lekhtman for a general consumer in 1975 being sold for 128 Canadian dollars. Researchers in Aachen started experimenting with their device in 2016. The calculated distance (airline) between Germany and Canada is approximately 6,750 Kilometer. About 1000 hours walking distance (given the ocean were replaced by the firm ground). It took almost 50 years for physicians to start practicing comparable device in Europe.

IsraeliCardioVest

Similar fate apparently befalls wearable garments such as Niturit, a seemingly ordinary T-shirt developed by the University of Aveiro in Portugal and the Israeli “Moked Enosh” company. The sensor enabled garment records ECG signals transmitting the results via a smart phone over a number of days directly from a patient to a cardiologist. The T-shirt was offered years ago as part of examinations by the Moked Enosh center at the cost of $ 117. While the European Space Agency was quick to choose this T-shirt to test astronauts, cardio patients are still awaiting it in their nearby hospitals.

No question, there are oases of innovations such as Mayo or Cleveland Clinics, or Kaiser Permanente being on top of the technological edge. Yet patients are less concerned about “best practices”, but rather with the “broader adoption” of innovative methods as part of a routine healthcare procedures.

We consume digital services daily in highly competitive and consumer oriented industries such as banking, manufacturing or retail. But healthcare still remains most highly impenetrable fortress for IT innovations. Just as we see disconnections of IT systems in many of the hospitals, so we observe a disruption of knowledge flows within the medical community. Such methods as “crowd funding” or “crowed testing” so familiar, e.g., in software development practices are not yet widely spread in healthcare environment.

Why the technologies that can make our healthcare more efficient, personalized and accessible are slow to reach the consumers?

To justify the inborn conservatism, medical professionals often refer to the fundamental bioethical principle of “Primum non nocere” or “first, do no harm” every medical student is taught at school. It is better to do nothing, than to risk causing more harm than good to your patients. Of course, healthcare has to deal with subjects much more complex and multifaceted than, e.g., manufacturing or finance. But if Niturit or HealthWatch, 15-lead ECG-sensing T-shirt that can read heart rate, blood pressure, detecting cardiac irregularities, have already been tested on a number of patients including astronauts, why other hospitals at least do not check on them? Are astronauts much more important than the rest of us citizens?

True, new delivery models will demand changes in traditional health bureaucracy and administration. How to combine, e.g., remote consultancy with the traditional face-to-face visits? Who will actually be responsible for the remote monitoring? How those remote services will be compensated by insurances? However complicated all those challenges may seem, solutions can be found. Other industries have coped with those problems rather quickly. Banks have adjusted their administration and personal issues to online payments and even software industries moved rather quickly from licenses to pay for services model.

Maybe the reason for delays is that there are simply too many of us patients around the world, so healthcare organizations have relatively low competition pressure compared to other industries? With population growing older and over 44% of World Health Organization Member States to have less than 1 physician per 1000 population patient, medical providers will hardly be left without jobs. Unlike other industries forced to fight for their customers by offering them better services, the problem in healthcare is reverse: how to reduce the patients overload.

Or maybe the blame is on patients who, despite all the proclaimed efforts to engage them, are still shy to decide on their own health? We consider ourselves professionals when demanding the ban of Nuclear Power stations in favor of a “cleaner and greener” technologies, but suddenly feel ourselves meek submissively accepting the risk of surgical procedures. We obediently swallow medications prescribed according to statistical tests, without asking why the given pill would work exactly for us, and we accept diagnosis and treatments without checking for alternative approaches.

For example, many cardio patients are undergoing expensive bypass surgeries. The bypass procedure is not harmless. The estimations are that following bypass only 75% of patients remain free of cardiac ischemia for five years, dropping to 50% by ten years. Meanwhile there are safer (though more primitive) methods existing for over 50 years for treating angina such as, e.g., External Counterpulsation (ECP) that is completely non-invasive. A computer microprocessor triggers the sequential inflation with compressed air of cuffs that are wrapped around a patient’s calves, thighs and buttocks. As the computer inflates the cuffs, blood is propelled from the lower body back into the heart. This action facilitates venous return of blood into the heart, increasing cardiac output. Does this method work for you? Maybe not, but at least it is worse to check it with your doctor.

So why there is no pressure from us citizens to stimulate medical community to crave for new and perhaps better methods of treatments like it is happening in other industries? To be honest, I do not have an answer, but I think it is time we should feel and behave ourselves less like sheepish patients, but more like citizens and customers of the healthcare system which we are directly or indirectly funding.